Luigi Ambrosio 
Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces [PDF ebook] 

Sokongan

The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces $(X, /mathsf d, /mathfrak m)$. On the geometric side, the authors’ new approach takes into account suitable weighted action functionals which provide the natural modulus of $K$-convexity when one investigates the convexity properties of $N$-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors’ new approach uses the nonlinear diffusion semigroup induced by the $N$-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger’s energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong $/mathrm {CD}^{*}(K, N)$ condition of Bacher-Sturm.

€125.09
cara bayaran
Beli ebook ini dan dapatkan 1 lagi PERCUMA!
Format PDF ● Halaman-halaman 121 ● ISBN 9781470455132 ● Penerbit American Mathematical Society ● Muat turun 3 kali ● Mata wang EUR ● ID 8057418 ● Salin perlindungan Adobe DRM
Memerlukan pembaca ebook yang mampu DRM

Lebih banyak ebook daripada pengarang yang sama / Penyunting

49,025 Ebooks dalam kategori ini