Benjamin Arras & Christian Houdré 
On Stein’s Method for Infinitely Divisible Laws with Finite First Moment [PDF ebook] 

Soporte

This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein’s method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.

€53.49
Métodos de pago

Tabla de materias

1 Introduction.- 2 Preliminaries.- 3 Characterization and Coupling.- 4 General Upper Bounds by Fourier Methods.- 5 Solution to Stein’s Equation for Self-Decomposable Laws.- 6 Applications to Sums of Independent Random Variables.

¡Compre este libro electrónico y obtenga 1 más GRATIS!
Idioma Inglés ● Formato PDF ● Páginas 104 ● ISBN 9783030150174 ● Tamaño de archivo 1.9 MB ● Editorial Springer International Publishing ● Ciudad Cham ● País CH ● Publicado 2019 ● Descargable 24 meses ● Divisa EUR ● ID 6980637 ● Protección de copia DRM social

Más ebooks del mismo autor / Editor

4.024 Ebooks en esta categoría