Benjamin Arras & Christian Houdré 
On Stein’s Method for Infinitely Divisible Laws with Finite First Moment [PDF ebook] 

Support

This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein’s method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.

€53.49
méthodes de payement

Table des matières

1 Introduction.- 2 Preliminaries.- 3 Characterization and Coupling.- 4 General Upper Bounds by Fourier Methods.- 5 Solution to Stein’s Equation for Self-Decomposable Laws.- 6 Applications to Sums of Independent Random Variables.

Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format PDF ● Pages 104 ● ISBN 9783030150174 ● Taille du fichier 1.9 MB ● Maison d’édition Springer International Publishing ● Lieu Cham ● Pays CH ● Publié 2019 ● Téléchargeable 24 mois ● Devise EUR ● ID 6980637 ● Protection contre la copie DRM sociale

Plus d’ebooks du même auteur(s) / Éditeur

4 024 Ebooks dans cette catégorie