Benjamin Arras & Christian Houdré 
On Stein’s Method for Infinitely Divisible Laws with Finite First Moment [PDF ebook] 

Ủng hộ

This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein’s method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.

€53.49
phương thức thanh toán

Mục lục

1 Introduction.- 2 Preliminaries.- 3 Characterization and Coupling.- 4 General Upper Bounds by Fourier Methods.- 5 Solution to Stein’s Equation for Self-Decomposable Laws.- 6 Applications to Sums of Independent Random Variables.

Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
Ngôn ngữ Anh ● định dạng PDF ● Trang 104 ● ISBN 9783030150174 ● Kích thước tập tin 1.9 MB ● Nhà xuất bản Springer International Publishing ● Thành phố Cham ● Quốc gia CH ● Được phát hành 2019 ● Có thể tải xuống 24 tháng ● Tiền tệ EUR ● TÔI 6980637 ● Sao chép bảo vệ DRM xã hội

Thêm sách điện tử từ cùng một tác giả / Biên tập viên

4.024 Ebooks trong thể loại này