Benjamin Arras & Christian Houdré 
On Stein’s Method for Infinitely Divisible Laws with Finite First Moment [PDF ebook] 

支持

This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein’s method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.

€53.49
支付方式

表中的内容

1 Introduction.- 2 Preliminaries.- 3 Characterization and Coupling.- 4 General Upper Bounds by Fourier Methods.- 5 Solution to Stein’s Equation for Self-Decomposable Laws.- 6 Applications to Sums of Independent Random Variables.

购买此电子书可免费获赠一本!
语言 英语 ● 格式 PDF ● 网页 104 ● ISBN 9783030150174 ● 文件大小 1.9 MB ● 出版者 Springer International Publishing ● 市 Cham ● 国家 CH ● 发布时间 2019 ● 下载 24 个月 ● 货币 EUR ● ID 6980637 ● 复制保护 社会DRM

来自同一作者的更多电子书 / 编辑

4,024 此类电子书