Kazuhiko Aomoto & Michitake Kita 
Theory of Hypergeometric Functions [PDF ebook] 

Support

This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.

€96.29
méthodes de payement

Table des matières

1 Introduction: the Euler-Gauss Hypergeometric Function.- 2 Representation of Complex Integrals and Twisted de Rham Cohomologies.- 3 Hypergeometric functions over Grassmannians.- 4 Holonomic Difference Equations and Asymptotic Expansion References Index.

Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format PDF ● Pages 320 ● ISBN 9784431539384 ● Taille du fichier 3.4 MB ● Traducteur Kenji Iohara ● Maison d’édition Springer Tokyo ● Lieu Tokyo ● Pays JP ● Publié 2011 ● Téléchargeable 24 mois ● Devise EUR ● ID 2441994 ● Protection contre la copie DRM sociale

Plus d’ebooks du même auteur(s) / Éditeur

956 Ebooks dans cette catégorie