Kazuhiko Aomoto & Michitake Kita 
Theory of Hypergeometric Functions [PDF ebook] 

Ondersteuning

This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.

€96.29
Betalingsmethoden

Inhoudsopgave

1 Introduction: the Euler-Gauss Hypergeometric Function.- 2 Representation of Complex Integrals and Twisted de Rham Cohomologies.- 3 Hypergeometric functions over Grassmannians.- 4 Holonomic Difference Equations and Asymptotic Expansion References Index.

Koop dit e-boek en ontvang er nog 1 GRATIS!
Taal Engels ● Formaat PDF ● Pagina’s 320 ● ISBN 9784431539384 ● Bestandsgrootte 3.4 MB ● Vertaler Kenji Iohara ● Uitgeverij Springer Tokyo ● Stad Tokyo ● Land JP ● Gepubliceerd 2011 ● Downloadbare 24 maanden ● Valuta EUR ● ID 2441994 ● Kopieerbeveiliging Sociale DRM

Meer e-boeken van dezelfde auteur (s) / Editor

953 E-boeken in deze categorie

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();