Kazuhiko Aomoto & Michitake Kita 
Theory of Hypergeometric Functions [PDF ebook] 

支持

This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.

€96.29
支付方式

表中的内容

1 Introduction: the Euler-Gauss Hypergeometric Function.- 2 Representation of Complex Integrals and Twisted de Rham Cohomologies.- 3 Hypergeometric functions over Grassmannians.- 4 Holonomic Difference Equations and Asymptotic Expansion References Index.

购买此电子书可免费获赠一本!
语言 英语 ● 格式 PDF ● 网页 320 ● ISBN 9784431539384 ● 文件大小 3.4 MB ● 翻译者 Kenji Iohara ● 出版者 Springer Tokyo ● 市 Tokyo ● 国家 JP ● 发布时间 2011 ● 下载 24 个月 ● 货币 EUR ● ID 2441994 ● 复制保护 社会DRM

来自同一作者的更多电子书 / 编辑

956 此类电子书

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();