Kazuhiko Aomoto & Michitake Kita 
Theory of Hypergeometric Functions [PDF ebook] 

Stöd

This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.

€96.29
Betalningsmetoder

Innehållsförteckning

1 Introduction: the Euler-Gauss Hypergeometric Function.- 2 Representation of Complex Integrals and Twisted de Rham Cohomologies.- 3 Hypergeometric functions over Grassmannians.- 4 Holonomic Difference Equations and Asymptotic Expansion References Index.

Köp den här e-boken och få 1 till GRATIS!
Språk Engelska ● Formatera PDF ● Sidor 320 ● ISBN 9784431539384 ● Filstorlek 3.4 MB ● Översättare Kenji Iohara ● Utgivare Springer Tokyo ● Stad Tokyo ● Land JP ● Publicerad 2011 ● Nedladdningsbara 24 månader ● Valuta EUR ● ID 2441994 ● Kopieringsskydd Social DRM

Fler e-böcker från samma författare (r) / Redaktör

926 E-böcker i denna kategori