The authors define the $k$:th moment of a Banach space valued random variable as the expectation of its $k$:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. The authors study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals, Pettis integrals and Dunford integrals.
¡Compre este libro electrónico y obtenga 1 más GRATIS!
Formato PDF ● Páginas 110 ● ISBN 9781470426170 ● Editorial American Mathematical Society ● Descargable 3 veces ● Divisa EUR ● ID 8057032 ● Protección de copia Adobe DRM
Requiere lector de ebook con capacidad DRM