The authors define the $k$:th moment of a Banach space valued random variable as the expectation of its $k$:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. The authors study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals, Pettis integrals and Dunford integrals.
Купите эту электронную книгу и получите еще одну БЕСПЛАТНО!
Формат PDF ● страницы 110 ● ISBN 9781470426170 ● издатель American Mathematical Society ● Загружаемые 3 раз ● валюта EUR ● Код товара 8057032 ● Защита от копирования Adobe DRM
Требуется устройство для чтения электронных книг с поддержкой DRM