The authors define the $k$:th moment of a Banach space valued random variable as the expectation of its $k$:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. The authors study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals, Pettis integrals and Dunford integrals.
Bu e-kitabı satın alın ve 1 tane daha ÜCRETSİZ kazanın!
Biçim PDF ● Sayfalar 110 ● ISBN 9781470426170 ● Yayımcı American Mathematical Society ● İndirilebilir 3 kez ● Döviz EUR ● Kimlik 8057032 ● Kopya koruma Adobe DRM
DRM özellikli bir e-kitap okuyucu gerektirir