The authors define the $k$:th moment of a Banach space valued random variable as the expectation of its $k$:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. The authors study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals, Pettis integrals and Dunford integrals.
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Format PDF ● Pages 110 ● ISBN 9781470426170 ● Maison d’édition American Mathematical Society ● Téléchargeable 3 fois ● Devise EUR ● ID 8057032 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM