The authors define the $k$:th moment of a Banach space valued random variable as the expectation of its $k$:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. The authors study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals, Pettis integrals and Dunford integrals.
购买此电子书可免费获赠一本!
格式 PDF ● 网页 110 ● ISBN 9781470426170 ● 出版者 American Mathematical Society ● 下载 3 时 ● 货币 EUR ● ID 8057032 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器