The authors define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented $2$-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Their proof uses a formula for the Viterbo-Maslov index for a smooth lune in a $2$-manifold.
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Format PDF ● Pages 114 ● ISBN 9781470416706 ● Maison d’édition American Mathematical Society ● Téléchargeable 3 fois ● Devise EUR ● ID 6613719 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM