The authors define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented $2$-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Their proof uses a formula for the Viterbo-Maslov index for a smooth lune in a $2$-manifold.
Beli ebook ini dan dapatkan 1 lagi PERCUMA!
Format PDF ● Halaman-halaman 114 ● ISBN 9781470416706 ● Penerbit American Mathematical Society ● Muat turun 3 kali ● Mata wang EUR ● ID 6613719 ● Salin perlindungan Adobe DRM
Memerlukan pembaca ebook yang mampu DRM