The authors define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented $2$-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Their proof uses a formula for the Viterbo-Maslov index for a smooth lune in a $2$-manifold.
购买此电子书可免费获赠一本!
格式 PDF ● 网页 114 ● ISBN 9781470416706 ● 出版者 American Mathematical Society ● 下载 3 时 ● 货币 EUR ● ID 6613719 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器