The authors define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented $2$-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Their proof uses a formula for the Viterbo-Maslov index for a smooth lune in a $2$-manifold.
Köp den här e-boken och få 1 till GRATIS!
Formatera PDF ● Sidor 114 ● ISBN 9781470416706 ● Utgivare American Mathematical Society ● Nedladdningsbara 3 gånger ● Valuta EUR ● ID 6613719 ● Kopieringsskydd Adobe DRM
Kräver en DRM-kapabel e-läsare