The authors define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented $2$-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Their proof uses a formula for the Viterbo-Maslov index for a smooth lune in a $2$-manifold.
Koop dit e-boek en ontvang er nog 1 GRATIS!
Formaat PDF ● Pagina’s 114 ● ISBN 9781470416706 ● Uitgeverij American Mathematical Society ● Downloadbare 3 keer ● Valuta EUR ● ID 6613719 ● Kopieerbeveiliging Adobe DRM
Vereist een DRM-compatibele e-boeklezer