The authors define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented $2$-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Their proof uses a formula for the Viterbo-Maslov index for a smooth lune in a $2$-manifold.
Compre este e-book e ganhe mais 1 GRÁTIS!
Formato PDF ● Páginas 114 ● ISBN 9781470416706 ● Editora American Mathematical Society ● Carregável 3 vezes ● Moeda EUR ● ID 6613719 ● Proteção contra cópia Adobe DRM
Requer um leitor de ebook capaz de DRM